
 

 

 
A whole new way to learn coding 

 

Curriculum Description 

Overview 
'Games and Animations'​ - A project-oriented programming curriculum that 
introduces new programmers to the skills required to build fun animations and games 
on the HTML canvas using JavaScript. Students develop real and applicable 
programming proficiencies like: declaring and using variables, conditional statements, 
data types, objects, loops, arrays and functions through engaging lessons and projects. 
 
The Games and Animations curriculum introduces these skills on a platform that 
includes an easy-to-use code editor, helpful error messages and robust documentation 
that lowers the learning curve for users. Students are quickly able to manipulate the 
canvas with graphics like shapes, images, and colors. Before long, students learn to 
build animations, develop logic statements and complex data structures within their 
programs. Students combine these skills to develop fun games in guided projects at 
the end of each instructional segment. 

Organization 
Units​ - The 'Games and Animations' curriculum is divided into two large units of study 
(soon to be three!). Unit 1 focuses on the basic skills required to build simple games. 
Unit 2 builds on the skills developed in Unit 1 by introducing more abstract concepts 
like for loops and complex conditional statements. 
 
Stages​ - Within a unit, students progress through 5 thematic stages. Each stage 
introduces a handful of fundamental programming skills. Stages conclude with a 
‘Challenge’. Students must demonstrate mastery of the skills introduced by passing the 
challenge to move on to the next stage.  
 
Lessons​ – Each stage is composed of: 
 

● 5 ‘Teaching lessons’ that introduce new programming skills. 
● 5 ‘Practice lessons’ that provide extra practice. 
● 1 ‘Review lesson’ that allows students to review material in a condensed format. 



 

 

 
A whole new way to learn coding 

 
● 1 ‘Vocabulary quiz’ - test if students have retained important vocabulary. 
● 1 ‘Challenge lesson’ that tests what students have learned in the stage. 

 
Lessons vary in length but grow in complexity as the student progresses through a 
Stage. Every lesson (except Challenge lessons) include a ‘Show me’ feature that 
provides the correct line of code so students are never stuck on a task. 
 
Guided Projects​ - The transition from curated lessons to a sandbox environment can 
be intimidating for students. Each stage three self-directed 'Guided projects' that ask 
students to use the skills they’ve learned to create a complex computer program in the 
Workshop. 
 
Workshop​ – Blackbird School has a robust sandbox environment (the Workshop) 
where students can develop their own code using what they’ve learned in the lessons. 
Students can explore model programs in the Nest, share code with friends and 
classmates on the platform, and receive feedback on projects from instructors. 
 
Educator Dashboard​ – The platform includes a full-featured learning management 
system (LMS) where teachers can create classes and invite students. Teachers get 
detailed information about student progress, like where a student is in the curriculum 
and how much time they’ve spent actively engaged with lessons and projects. Teachers 
can view student’s work in the Workshop and can comment on their code allowing for 
quick and responsive feedback. 

Curriculum outline 

Unit 1 – Simple games 
● Stage 1 – The canvas:​ Students learn about the HTML canvas and how to place 

points, lines and text on it. 
● Stage 2 – Shapes and colors:​ Students learn how to use functions to create 

colorful shapes and images on the canvas. 
● Stage 3 – Animation:​ Students learn how to use the animate function to create 

engaging programs on the canvas. 
● Stage 4 – Variables and objects:​ Students learn how about the data structures 

variables and objects. 



 

 

 
A whole new way to learn coding 

 
● Stage 5 – Simple games:​ Students learn how to incorporate the skills they’ve 

learned to program simple games. 

Unit 2 – More games 
● Stage 6 – For Loops:​ Students learn how to construct repeating sections of code 

called for loops. 
● Stage 7 – Conditional statements:​ Students learn more about different types 

of logic statements. 
● Stage 8 – Arrays:​ Students learn to organize data in a list called an array. 
● Stage 9 – Loops and arrays:​ Students learn how to build lists using loops. 
● Stage 10 – Advanced games: ​Students learn how to incorporate the skills 

they’ve learned to program more complex games. 

Computer Science Standards Addressed 
The Games and Animations curriculum is suitable for students ages 11 and up. Below 
are the computer science standards addressed as identified in the ​CSTA K-12 
Computer Science Standards​ for Level 2 with commentary about how the Games and 
Animations curriculum addresses each.  

Level 2 Standards 
● Algorithms and Programming 

○ 2-AP-11: Create clearly named variables that represent different data 
types and perform operations on their values. 

■ Students are provided models of variable naming conventions 
throughout the Games and Animations curriculum. 

○ 2-AP-12: Design and iteratively develop programs that combine control 
structures, including nested loops and compound conditionals. 

■ Many lessons in Games and Animations demonstrate the iterative 
nature of programming by adding and refining portions of code written 
in previous lessons. 

○ 2-AP-13: Decompose problems and subproblems into parts to facilitate 
the design, implementation, and review of programs. 

■ Lessons in the Games and Animations curriculum feature ‘Step tasks’ 
that guide learners, line-by-line, through complex portions of code to 

https://www.doe.k12.de.us/cms/lib/DE01922744/Centricity/Domain/176/CSTA%20Computer%20Science%20Standards%20Revised%202017.pdf
https://www.doe.k12.de.us/cms/lib/DE01922744/Centricity/Domain/176/CSTA%20Computer%20Science%20Standards%20Revised%202017.pdf


 

 

 
A whole new way to learn coding 

 
demonstrate how the program works, and to help uncover problems in 
the code. 

○ 2-AP-14: Create procedures with parameters to organize code and make it 
easier to reuse. 

■ Students master the use of a limited set of functions, built-in objects 
and data structures so they are able to employ those skills in work of 
their own.  

○ 2-AP-15: Seek and incorporate feedback from team members and users 
to refine a solution that meets user needs. 

■ All work completed in the Workshop on Blackbird School is viewable by 
instructors who have the ability to leave detailed code review. Projects 
are also viewable by friends and classmates on the platform to 
encourage collaboration and refinement of programs. 

○ 2-AP-16: Incorporate existing code, media, and libraries into original 
programs, and give attribution. 

■ Each lesson in the Games and Animation curriculum guides students in 
the creation of a complete computer program. The structures modeled 
in these lessons allow students to apply them in their own work without 
the added complication of importing libraries or accessing other 
resources. 

○ 2-AP-17: Systematically test and refine programs using a range of test 
cases. 

■ Allowing students to uncover problems in their code (debugging) is at 
the heart of the development of Blackbird School. The platform 
features a robust syntax checker, easy to interpret error messages and 
complete documentation. In addition the code editor allows students to 
step through their programs one line at a time. Lessons in the 
curriculum deliberately include bugs and highlight how a programmer 
can solve these issues in their code. 

○ 2-AP-18: Distribute tasks and maintain a project timeline when 
collaboratively developing computational artifacts. 

■ The Workshop in Blackbird School allows students to easily access the 
work of their collaborators. Guided projects in the workshop provide 
opportunities for students to work on a common task with their 
classmates. Teachers are able to monitor this work and review code - 
all within the same application. 



 

 

 
A whole new way to learn coding 

 
○ 2-AP-19: Document programs in order to make them easier to follow, test, 

and debug 
■ Lessons in the Games and Animation curriculum are all completely 

commented, provided ample models of proper documentation of code. 
With Code Review, teachers are able to monitor and reinforce proper 
documentation practices with their students. 

Logistics 
● Time requirements​ - One semester or about 16-18 weeks. 
● Technology requirements​ – Computers with internet (desktop or laptop), 

classroom with projector is a plus. 


